A UC Davis Graduate Student Blog

Tag: History of Science

In memory of Syndey Brenner: his part of the discovery of messenger RNA

Written by: Hongyan Hao

Edited by: Ellen Osborn

All biology undergraduates learn the central dogma: DNA makes RNA and RNA makes protein. However, not long ago, this dogma was intensely debated because it was unclear if DNA or protein contained the genetic material of the cell. The famous double helix model opened the door to molecular biology in 1953. But it took an additional eight years to discover the messenger RNA. Sydney Brenner, who shared the 2002 Nobel Prize in Physiology or Medicine, was a key traveler in this long journey.  

Portrait photograph of Sydney Brenner, c. 1960s, 
Copyright: MRC Laboratory of Molecular Biology

 

 

 

 

 

 

 

 

 

 

As described in his autobiography, My life in Science, Brenner thought about how genetic information guides protein synthesis even before he saw the double helix model in April 1953 at Cambridge. Inspired by the similar step size of nucleic acid (3.5 angstrom units) and amino acids (3.3 angstrom units) pointed out in William Astbury’s 1947 paper, Brenner developed his “pet theory” that amino acids join together at the same time nucleic acid strands are synthesized. At the time, people knew that DNA sequences defined proteins, but it was not clear whether there was an intermediate molecule between DNA and protein. With the discovery that protein synthesis occurs at ribosomes, it was largely assumed that the intermediate was the ribosomal RNA (rRNA). However, some people were skeptical about this. One reason for this skepticism was that in bacteria, the ratio of the amount of G+C to A+T in DNA varied a lot between bacteria species, while in rRNA the variation was trivial.

Another concern was what Brenner called the “paradox of the prodigious rate of protein synthesis.” While working with bacteriophages at Cambridge, Brenner and Francis Crick observed that after phage infection, 70% of protein made in the infected bacteria was the phage head protein instead of the bacteria protein. If rRNA is the intermediate for protein synthesis, a significant increase of new rRNA should be observed. However, there was no detectable rRNA synthesis. In 1956, Elliot Volkin and Lazarus Astrachan discovered that a small amount of short-lived RNA resembles the phage DNA in base composition rather than the bacterial DNA after phage infection, however, they were kind of focused on the idea that these new RNA could be the precursor of phage DNA. 

Four years later, the secret of the mysterious Volkin-Astrachan RNA was uncovered in Brenner’s living room. It was during an informal meeting of a small group of scientists, including Crick and François Jacob from Institut Pasteur in France. Jacob described the new findings from the famous Pardee, Jacob and Monod (PaJaMo) mating experiment. Normally, bacteria synthesize galactosidase in a medium containing lactose. However, the lac- mutant cannot digest lactose until the gene that encodes the galactosidase is transferred into the cell. Galactosidase synthesis is extremely rapid, happening within minutes. Interestingly, when they let the bacteria produce galactosidase for some minutes and then destroyed the transferred DNA, galactosidase synthesis stopped immediately. These results ruled out the possibility of any stable intermediate like rRNA because if the intermediate were stable, galactosidase synthesis should have continued for a while after the gene was removed. Upon hearing Jacob’s description, suddenly, Brenner got excited and shouted to Crick, “Volkin-Astrachan; information intermediate; it’s short-lived; a short-lived intermediate! It must be! Look at the way it turns over in phage!”

The next step was to plan experiments testing whether the short-lived RNA was the intermediate messenger that guides protein synthesis. If Brenner’s hypothesis was correct, then the new RNA intermediate synthesized after phage infection should be associated with the old bacterial ribosomes.To do this, they needed a way to distinguish between the ‘new’ and ‘old’ ribosomes. Lucky for them, Matthew Meselson and Frank Stahl at California Institute of Technology (Caltech) developed the density gradient centrifugation experiment and successfully separated the isotope N15-labeled DNA from the N14 DNA in a caesium chloride solution. The RNA intermediate experiment could use this approach to label bacterial ribosomes with isotopes before phage infection and resuspended in the medium without isotopes right after infection, which would make the old ribosomes heavier than the new ribosomes and therefore distinguishable by density gradient centrifugation. 

Jacob and Brenner went to Matt Meselson’s lab in California the following summer to test their new hypothesis. The experiment that followed was, as described by Brenner himself, a “hilarious story”. The experiment itself was complex, isotopes were expensive, samples needed to be spun in the centrifuges for nearly 20 hours or more, and the centrifuges were unreliable. And they only had three weeks! The first problem Jacob and Brenner encountered was that the ribosomes were not stable and dissociated during sedimentation in the centrifuge. They tried to troubleshoot, but to no avail. They even thought of purifying ribosomes from Dead Sea bacteria because they already live in a high salt environment and might be more tolerant of the high concentration of caesium chloride. Unfortunately, their phage couldn’t infect the Dead Sea bacteria. 

Frustrated and tired, they went to a nearby beach to, in Brenner’s own words, “rest their weary souls”. Jacob recalled this time in his autobiography: “There we were, collapsed on the sand, stranded in the sunlight like beached whales. My head felt empty. Growing, knitting his heavy eyebrows, with a nasty look, Sydney gazed at the horizon without saying a word.” Lying on the beach, it occurred to Brenner that magnesium stabilizes the ribosomes and the high caesium could displace the magnesium, making the ribosomes unstable! They ran back to the lab and set up their last-chance experiment of three samples with higher magnesium concentrations. During the chaos, Jacob dropped the radioactive phosphate in the water bath and the centrifuge broke down in the middle of the experiment! Luckily, they were able to borrow a centrifuge from a neighboring lab. Nervously, Brenner carried the rotor with the tubes to the cold room. He walked there because the elevator would shake the tubes, destroying the gradient he had worked so hard to create. In the end, they managed to finish the experiment and showed that the new radioactive RNA peaked at the same position with the old ribosomes! Later, these results were published in Nature in 1961, along with the discovery from James Watson’s lab that a fraction of rapidly labeled RNA of different sizes were associated with the ribosome active site (where protein synthesis happens). That same month, the term “messenger RNA” and it’s possible role in gene regulation was discussed in Jacob and Monod’s review article in Journal of Molecular Biology.

Even today, the exploration of messenger RNA never ends. I’m fascinated with how the friendship between scientists, critical thinking, effective communication, and collaboration all contributed to the discovery of messenger RNA. When we hear stories about scientific discoveries, it often sounds like a genius just appeared and came up with an idea that changed the world. But Sydney Brenner’s story shows that it’s not that simple. Scientists can make wrong hypotheses, create naive models and misinterpret results. Sometimes, experiments won’t work; sometimes people tell you not to try an experiment because it is unlikely to work; sometimes you get weird results; sometimes people question and laugh at your hypothesis. But sometimes you make fascinating discoveries. Sydney Brenner passed away in April 2019 at the age of 92. Brenner’s obsession with science, creative thinking, open mindedness, and persistent pursuit of answers will continue to inspire scientists like myself.

 

Sources:

  1. Brenner, Sydney. My Life in Science. London, 2001.
  2. Hernandez, Victoria, “The Meselson-Stahl Experiment (1957–1958), by Matthew Meselson and Franklin Stahl”. Embryo Project Encyclopedia (2017-04-18). ISSN: 1940-5030 http://embryo.asu.edu/handle/10776/11481
  3. Meselson, Matthew, and Franklin W. Stahl. “The replication of DNA in Escherichia coli.” Proceedings of the national academy of sciences 44.7 (1958): 671-682.
  4. Brenner, Sydney, François Jacob, and Matthew Meselson. “An unstable intermediate carrying information from genes to ribosomes for protein synthesis.” Nature 190.4776 (1961): 576-581.
  5. Gros, François, et al. “Unstable ribonucleic acid revealed by pulse labelling of Escherichia coli.” Nature 190.4776 (1961): 581-585.
  6. Morange, Michel. “What history tells us XLV. The ‘instability’ of messenger RNA.” Journal of biosciences 43.2 (2018): 229-233.
  7. Cobb, Matthew. “Who discovered messenger RNA?.” Current Biology 25.13 (2015): R526-R532.

Psychedelics in Biology and Mental Health 

Written by Keith Fraga

Edited by Mikaela Louie

 

Psychedelic drugs are often taboo in US culture particularly since their extensive criminalization in 1970. Substances like LSD, MDMA, DMT, and those derived from fungi like psilocybin, are drugs known to have hallucinogenic effects on humans. The ability of these substances to produce mind-altering experiences lead to massive efforts to control their study and use.

However, restrictive policies surrounding psychoactive and other mind-altering substances may be changing. For example, cannabis is undergoing rapid social and legal acceptance in the US. The City of Oakland legalized the recreational use of magic mushrooms in June, another potent hallucinogenic. Substances such as ayahuasca have a long history as a traditional medicine. Whatever impact psychedelics have on treating debilitating mental illnesses deserves experimental study and mechanistic understanding. Indeed, psychedelics are in several clinical trials to treat various mental illnesses, like depression, anxiety, PTSD, with the potential to be applied to many more mental health conditions. UC Davis researchers recently published an article in Cell on a study of psychedelics’ effects on neural plasticity.  

Diving into the literature, I wanted to answer a few specific questions. What is the history of psychedelic research? Where did restrictive policies surrounding psychedelics come from in the first place? What has contributed to the thawing of restrictions on clinical psychedelic use ? How has biology and neuroscience changed our understanding of these substances? And lastly, what do we not know and where should we be cautious?

 

HISTORY

The history of psychedelic drugs help us understand their possible future. Psychedelics refer to many substances, and naturally occurring psychedelics such as psilocybin or ayahuasca have been consumed by humans for centuries. Others are more recent in human history, being chemically synthesized in the late/early 19th-20th centuries. When consumed, psychedelics generally cause an altered state of perception. Often these altered states affect tethers to reality, mirroring what happens in psychosis. The history and story of lysergic acid diethylamide (LSD) is an important example of the use and study of psychedelic drugs.

LSD was first synthesized by Swiss scientist Albert Hofmann in 1938. Hofmann set out to synthesize compounds that could be used for blood vessel constriction, which could help in medical applications to reduce blood loss. After accidental contact with LSD, Hofmann found that this compound had hallucinogenic properties. 

Hofmann self-administered doses of LSD to test and observe its effects, becoming convinced of LSD’s potency to address mental illness. Hofmann contributed to the spread of LSD from doctor to doctor, making its way to the US. It was quickly found that LSD had potent therapeutic effects for treating various psychological conditions and became wildly presubscribed by therapists across the US and Europe.

 

USE AND REGULATION IN THE UNITED STATES

An important aspect to the rise in LSD usage was the prescription and research by independent, unregulated clinics and therapists. In this unregulated climate, LSD found its way out of the laboratory and into the 1960s US counter-culture. The culture around psychedelic research and usage at this time was very exploratory. As with the initial discovery and subsequent spread of LSD, therapists and researchers self-experimented and shared these compounds without discretion.

The obvious potent effects of LSD spurred a generation’s worth of compelling, rigorous research. Figure 1, shown below, depicts the relative citation rate for the terms “psychedelic” or “lysergic acid diethylamide” in any journal article title/abstract. The years between 1950-1970 can be called the “golden-age” of clinical and basic research on uses for LSD. During this period, much was learned about LSD’s effects on human psychology, crucial observations on the aspects of psychedelic “trips”, effective uses of LSD in psychedelic assisted therapy, all of which are now being re-examined with modern medical and biological methods.

 

Figure 1: Citation rate for words “psychedelic” or “Lysergeic acid diethylamide” in journal article title/abstracts. The data series in blue is just for “psychedelic” or “Lysergeic acid diethylamide”, while the red series is a separate search with additional search terms for other psychedelic substances. Find the interactive version here.

 

It is also clear from Figure 1 is the “golden-age” of LSD research rapidly came to an end. In response to growing concerns for unregulated, unethical use of LSD, the Food and Drug Administration adopted new policies restricting the use, possession, and manufacturing of these drugs. A series of legal policies were installed in the ‘60s to curtail the use, possession, manufacturing, and research into these compounds, culminating in the Controlled Substances Act (CSA) in 1970. The CSA is the legal authority that established the Schedule system for controlled substances. Schedule I is the most restrictive category of compounds. With strict policies and massive legal consequences for inappropriate use of these substances, many researchers and therapists in the field ceased their work.

 

THAWING OF RESTRICTIONS ON PSYCHEDELIC RESEARCH 

It is difficult to identify a singular cause for the increase in interest and research on psychedelics. That being said, I find two specific developments particularly informative to the growing acceptance of psychedelic research. First is the research on how psychedelics can improve the quality of life for patients with life-threatening disease or terminal illness. Patients with life-threatening diseases, terminal illness, and associated chronic pain experience lower quality of life, higher rates of depression, and lower life-expectancy. While researching for this article, I found the following interview with Michael Pollan, a journalist who studies the impacts of psychedelics and their potential growing role in society. In this interview, he relates what sparked his interest in therapeutic use of psychedelics was their ability to improve the mental health of terminally ill patients. Numerous recent studies and reviews have recently contributed to this area of research. Psychedelics in end-of-life care was actually studied in the 60’s, and it is now being revived. Current research on therapeutic effects of psychedelics has demonstrated they can dispel anxiety, fear, and despair in these patients safely, and social taboos and legal policies are slowly changing in order to increase access and study of these benefits.

Psychedelic assisted therapy is also being explored for an array of mental health conditions. Numerous psychotherapy drug trials currently ongoing. The MultiDisciplinary Association of Psychedelic Studies (MAPS) is a central scientific research coalition propeling psychotherapy trials forward. MAPS independently supports trials for psychotherapy with a wide array of substances to tackle a diverse set of mental health conditions. Specifically, MAPS is currently working with the FDA for MDMA assisted psycho-therapy.   

Psychedelic assisted psychotherapy presents an alternative therapy regimen for mental illness in part because of the global effects psychedelics have in the brain. A significant hypothesis in this field is psychedelics and psychiatric medications address mental illness at different scales. Psychiatric medications, like antidepressants, offer to rectify chemical and functional imbalances in the brain. These often target specific neuro-transmitter/receptor imbalances. However, psychedelics impact brain activity at a systems level, disrupting default neural networks and activating connections between disparate regions of the brain. The golden-age of psychedelic research in ‘60s intuitively reached many of these ideas concerning the global effects in the brain psychedelics have. With modern developments in science, medicine, and biology, researchers can interrogate psychedelic compounds’ effects on brain function at greater resolution. 

 

A BIOLOGICAL MAGNIFYING GLASS TO PSYCHEDELICS

A significant motivation of this article is a study by a team of UC Davis scientists studying the effects that a battery of psychedelic drugs have on structure and dynamics of neurons. This study experimentally demonstrated that many psychedelic compounds promote neurons to make new synapses, growth of new neuron axons, and altered neurophysiological functionality. In part, this is why psychedelic compounds are termed by the authors of this study “psychoplastogens” for their ability to promote plasticity at the level of the brain. These investigators also experimentally tested mechanistic models for how these large-scale structural and functional changes in response to psychedelics. Investigations similar to the UC Davis study represent how advanced techniques in biology can garner quantitative insights into the mode of action for these potent compounds. 

A greater understanding of how psychedelics functionally work in the brain can lead to the generation of new compounds that have similar functional effects demonstrated in the above study, with the idea being these newly designed compounds may induce similar subjective experiences, or “trips”. In other words, the generation of novel “psychoplastogens” is possible when we learn more about what determines their function in the brain. Alternatively, psychoplastogens can be used to perturb aspects of the brain to piece together the mechanisms for subjective experience. Biology has a rich tradition of using tools to perturb a biological system and measuring its output to uncover the mechanisms that make it work in the first place. Psychedelics can serve a similar role in potentially understanding perception, cognition, and consciousness.    

 

CAUTIONARY TALES

Nearly every editorial, podcast, or interview I have heard on this subject includes strong cautionary tales. Psychoactive drugs can have unintended consequences.The mind-altering capabilities for these drugs are so potent that they may do more harm than good for some people, which is one reason why I am particularly excited about the prospect of trained therapists guiding a patient’s trip. How the chemistry of these molecules and their therapeutic use come together to help people is an exciting new venture in medicine.

 

Powered by WordPress & Theme by Anders Norén